Preview

Shagi / Steps

Advanced search

Towards an ethical strategy for research data infrastructures: Digitalizing archives of historical hate

EDN: RIDITQ

Abstract

This paper explores the ethical complexities of developing research data infrastructures (RDIs) for digitalized archives, with a focus on materials containing historical hateful content. It examines the tension between the principles of open access and mass digitization, which aim to enhance knowledge accessibility, and the ethical imperative to prevent the dissemination of harmful content that could perpetuate biased ideologies or harmful stereotypes. The author proposes a comprehensive ethical strategy that integrates a trans-epistemic design approach with principles of organizational learning and development to address these challenges. This strategy emphasizes collaboration among diverse stakeholders – archivists, researchers, IT experts, and affected communities – to create solutions that are both ethically robust and practically viable. By moving beyond solely technical or legal frameworks, the approach seeks to balance the accessibility of historical records for research purposes with the need to mitigate risks associated with the spread of hateful content. The paper delves into critical issues such as algorithmic bias, which can inadvertently amplify harmful stereotypes, and the dual-use potential of AI, where technologies designed for archival efficiency might be misused. It also addresses the conflict between open science principles and restricted access to sensitive materials, advocating for nuanced access controls for both human users and AI systems. Through a trans-epistemic lens, the strategy fosters interdisciplinary dialogue to ensure RDIs serve as ethical infrastructures that preserve historical knowledge while safeguarding against harm, contributing to a framework for responsible digital archiving.

About the Author

J. Z. Krasni
University of Marburg
Germany

Jan Zlatković Krasni, PhD Research Fellow, Department of Education

Bunsenstr. 3, 35032, Marburg



References

1. Abramson, C. M., Li, Z., Prendergast, T., & Sánchez-Jankowski, M. (2024). Inequality in the origins and experiences of pain: What “big (qualitative) data” reveal about social suffering in the United States. RSF: The Russell Sage Foundation Journal of the Social Sciences, 10(5), 34–65. https://doi.org/10.7758/RSF.2024.10.5.02.

2. Agamben, G. (2009). What is an apparatus? and other essays. Stanford Univ. Press. https://doi.org/10.1515/9781503600041.

3. Ascone, L., Becker, M. J., Bolton, M., Chapelan, A., Haupeltshofer, P., Krasni, J., Krugel, A., Mihaljević, H., Placzynta, K., Pustet, M., Scheiber, M., Steffen, E., Troschke, H., Tschiskale, V., & Vincent, Ch. (2023). Decoding antisemitism: An AI-driven study on hate speech and imagery online. Technische Universität Berlin. Centre for Research on Antisemitism. https://doi.org/10.14279/depositonce-17105.

4. Chilcott, A. (2019). Towards protocols for describing racially offensive language in UK public archives. Archival Science, 19, 359–376. https://doi.org/10.1007/s10502-019-09314-y. Colavizza, G., Blanke, T., Jeurgens, C., & Noordegraaf, J. (2021). Archives and AI: An overview of current debates and future perspectives. Journal on Computing and Cultural Heritage, 15(1), Article 4. https://doi.org/10.1145/3479010.

5. Cushing, A. L., & Osti, G. (2023). “So how do we balance all of these needs?”: How the concept of AI technology impacts digital archival expertise. Journal of Documentation, 79(7), 12–29. https://doi.org/10.1108/JD-08-2022-0170.

6. Dieterle, E., Dede, C., & Walker, M. (2024). The cyclical ethical effects of using artificial intelligence in education. AI & Society, 39, 633–643. https://doi.org/10.1007/s00146-022-01497-w.

7. Dogtas, G., Ibitz, M.-P., Jonitz, F., Kocher, V., Poyer, A., & Stapf, L. (2022). Kritik an rassifizierenden und diskriminierenden Titeln und Metadaten – Praxisorientierte Lösungsansätze. Critical Library Perspectives, 9(4), 1–14. https://doi.org/10.21428/1bfadeb6.abe15b5e.

8. Ebert, K., Bode, M., Haase, T., & Keller, A. (2022). Mobile digitale Assistenzsysteme in der Weberei — Anforderungen an die kognitiv ergonomische Gestaltung. In Technologie und Bildung in hybriden Arbeitswelten. 68. GfA-Frühjahrskongress 2022 (pp. 1–6) (n. p.).

9. Favaretto, M., Clercq, E., Briel, M., & Elger, B. (2020). Working through ethics review of big data research projects: an investigation into the experiences of Swiss and American researchers. Journal of Empirical Research on Human Research Ethics, 15(4), 339–354. https://doi.org/10.1177/1556264620935223.

10. Ferrara, E. (2023). Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies (preprint). https://doi.org/10.2196/preprints.48399.

11. Finn, M., & Shilton, K. (2023). Ethics governance development: the case of the Menlo Report. Social Studies of Science, 53(3), 315–340. https://doi.org/10.1177/03063127231151708.

12. Floridi, L. (2011). Enveloping the world for AI. The Philosophers’ Magazine, 54(54), 20–21. https://doi.org/10.5840/tpm20115437.

13. Floridi, L. (2023). The ethics of artificial intelligence: Principles, challenges, and opportunities. Oxford Univ. Press.

14. Floridi, L., & Taddeo, M. (2016). What is data ethics? Philosophical Transactions of the Royal Society a Mathematical Physical and Engineering Sciences, 374(2083), 20160360. https://doi.org/10.1098/rsta.2016.0360.

15. Ghasemaghaei, M., & Kordzadeh, N. (2024). Understanding how algorithmic injustice leads to making discriminatory decisions: An obedience to authority perspective. Information & Management, 61(2), 1–14. https://doi.org/10.1016/j.im.2024.103921.

16. Gualdi, F., & Cordella, A. (2021). Artificial intelligence and decision-making: The question of accountability. In Proceedings of the 54th Hawaii International Conference on System Sciences (pp. 2297–2306) (n. p.). https://doi.org/10.24251/hicss.2021.281.

17. Haase, T., Keller, A., Radde, J., Berndt, D., Fredrich, H., & Dick, M. (2020). Anforderungen an die lerntheoretische Gestaltung arbeitsplatzintegrierter VR-/AR-Anwendungen. In GfA Dortmund (Ed.). Digitaler Wandel, digitale Arbeit, digitaler Mensch? B.16.1., 1–7.

18. Heidelmann, M. A., Weber, S. M. (2022). Eine Haltung ausbilden — Organisationen und Netzwerke beraten lernen. Mit symbolischen Ordnungen der Beratung zur Organisationspädagogischen Professionalisierung. In J. Elven, & S. M. Weber (Eds.). Beratung in symbolischen Ordnungen. Organisationspädagogische Analysen sozialer Beratungspraxis (pp. 325–356). Springer. https://doi.org/10.1007/978-3-658-13090-9_17.

19. Hemphill, S., Jackson, K., Bradley, S., & Bhartia, B. (2023). The implementation of artificial intelligence in radiology: a narrative review of patient perspectives. Future Healthcare Journal, 10(1), 63–68. https://doi.org/10.7861/fhj.2022-0097.

20. Holterhoff, K. (2017). From disclaimer to critique: Race and the digital image archivist. Digital Humanities Quarterly, 11(3). http://www.digitalhumanities.org/dhq/vol/11/3/000324/000324.html.

21. Jensen, U., & Schüler-Springorum, S. (2013). Einführung: Gefühle gegen Juden. Die Emotionsgeschichte des modernen Antisemitismus. Geschichte Und Gesellschaft, 39(4), 413–442. https://doi.org/10.13109/gege.2013.39.4.413.

22. Jobin, A., & Ienca, M. (2019). The global landscape of ai ethics guidelines. Nature Machine Intelligence, 1, 389–399. https://doi.org/10.1038/s42256-019-0088-2.

23. Jones, C., Castro, D. C., De Sousa Ribeiro, F., et al. (2024). A causal perspective on dataset bias in machine learning for medical imaging. Natural Machine Intelligence, 6, 138–146. https://doi.org/10.1038/s42256-024-00797-8.

24. Keller, A., Selinski, A., Vuong, T. H. C., & Haase, T. (2024). Stakeholderspezifische Zugänge zu arbeitsgestalterischen Inhalten — technisch-didaktische Konzeption und erste Erkenntnisse. Arbeitswissenschaft in-the-loop. Mensch-Technologie-Integration und ihre Auswirkung auf Mensch, Arbeit und Arbeitsgestaltung, I.1.4, 1–6. https://doi.org/10.24406/publica-3888.

25. Keller, A., & Weber, S. M. (2020). Trans-epistemic design-(research): Theorizing design within industry 4.0 and cognitive assistive systems. In Proceedings of the Design Society: DESIGN Conference (Vol. 1, pp. 627–636). Oxfοrd Univ. Press. https://doi.org/10.1017/dsd.2020.173.

26. Keller, A., Weber, S.M., Rentzsch, M. Haase, T. (2021). Lern-und Assistenzsysteme partizipativ integrieren – Entwicklung einer Systematik zur Prozessgestaltung auf Basis eines organisationspädagogischen Ansatzes. Zeitschrift für Arbeitswissenschaft, 75, 455–469. https://doi.org/10.1007/s41449-021-00279-2.

27. Kordzadeh, N., & Ghasemaghaei, M. (2022). Algorithmic bias: review, synthesis, and future research directions. European Journal of Information Systems, 31(3), 388–409. https://doi.org/10.1080/0960085X.2021.1927212.

28. Kroll, J. A. (2020). Accountability in computer systems. In M. D. Dubber, F. Pasquale, & S. Das (Eds.). The Oxford handbook of ethics of AI (pp. 180–196). Oxford Univ. Press. https://doi.org/10.1093/oxfordhb/9780190067397.013.10.

29. Manžuch, Z. (2017). Ethical issues in digitization of cultural heritage. Journal of Contemporary Archival Studies, 4, Article 4. 1–17.

30. Marchello, G., Giovanelli, R., Fontana, E., Cannella, F., & Traviglia, A. (2023). Cultural heritage digital preservation through AI-driven robotics. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. XLVIIIM-2-2023, pp. 995–1000) (n. p.). https://doi.org/10.5194/isprs-archives-XLVIIIM-2-2023-995-2023.

31. Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., & Galstyan, A. (2021). A survey on bias and fairness in machine learning. ACM Computing Surveys, 54(6), 1–35. Article 115. https://doi.org/10.1145/3457607.

32. Metcalf, J., & Crawford, K. (2016). Where are human subjects in big data research? The emerging ethics divide. Big Data & Society, 3(1), 1–14. https://doi.org/10.1177/2053951716650211.

33. Modest, W. (2018). Words matter. In Р. Lelijveld (Ed.). Words Matter. An unfinished guide to word choices in the cultural sector (E-book, pp. 13–17). Tropen Museum, Afrika Museum, Museum Volkenkunde, Wereled Museum. URL: https://www.materialculture.nl/en/publications/words-matter.

34. Naß, M. A. (2020). Was darf die Kunst(institution)? Zwischen dem white cube als safe space und Zensur als Neurechter Kampfbegriff. In C. M. Ruederer (Ed.). Infrastructures — Online Reader. Kunstverein München e. V. URL: https://www.kunstverein-muenchen.de/de/programm/programmreihen/2020/infrastructures/online-reader.

35. Naumann, K. (2023). Ethische Grundlagen der Onlinestellung von digitalisierem Archivgut und deren Umsetzung. Recht und Zugang, 4(3), 237–252. https://doi.org/10.5771/2699-1284-2023-3.

36. Nickel, P. (2022). Trust in medical artificial intelligence: A discretionary account. Ethics and Information Technology, 24(1), Article 7. https://doi.org/10.1007/s10676-022-09630-5.

37. Novelli, C., Taddeo, M., & Floridi, L. (2024). Accountability in artificial intelligence: what it is and how it works. AI & Society, 39, 1871–1882. https://doi.org/10.1007/s00146-023-01635-y.

38. Ochang, P., Stahl, B., & Eke, D. (2022). The ethical and legal landscape of brain data governance. Plos One, 17(12), e0273473. https://doi.org/10.1371/journal.pone.0273473.

39. O’Neil, C. (2016). Weapons of math destruction: How big data increases inequality and threatens democracy. Crown.

40. Pilgrim, D. (n. d., retrieved 2005). The garbage man: Why I collect racist objects. In Jim Crow Museum. https://jimcrowmuseum.ferris.edu/collect.htm.

41. Poel, I. (2020). Embedding values in artificial intelligence (AI) systems. Minds and Machines, 30(3), 385–409. https://doi.org/10.1007/s11023-020-09537-4.

42. Raji, I. D., Smart, A., White, R. N., Mitchell, M., Gebru, T., Hutchinson, B., Smith-Loud, J., Theron, D., & Barnes, P. (2020). Closing the AI accountability gap: defining an endto-end framework for internal algorithmic auditing. In M. Hildebrandt, & C. Castillo (Eds.). FAT*’20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 33–44). Association for Computing Machinery. https://doi.org/10.1145/3351095.3372873.

43. Randby, T., & Marciano, R. (2020). Digital Curation and Machine Learning Experimentation in Archives. In Xintao Wu et al. (Eds.). 2020 IEEE International Conference on Big Data (Big Data) (pp. 1904–1913). IEEE. https://doi.org/10.1109/BigData50022.2020.9377788.

44. Rantanen, M., Hyrynsalmi, S., & Hyrynsalmi, S. (2019). Towards ethical data ecosystems: A literature study. In 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC): Conference Proceedings ICE/IEEE ITMC 2019 #47383: Cocreating our Future: Scaling-up Innovation Capacities through the Design and Engineering of Immersive, Collaborative, Empathic and Cognitive Systems (pp. 1–9). ΙΕΕΕ. https://doi.org/10.1109/ice.2019.8792599.

45. Ryan, M. (2020). In AI we trust: Ethics, artificial intelligence, and reliability. Science and Engineering Ethics, 26(5), 2749–2767. https://doi.org/10.1007/s11948-020-00228-y.

46. Shabani, M., Thorogood, A., & Murtagh, M. (2021). Data access governance. In G. Laurie et al. (Eds.). The Cambridge handbook of health research regulation (pp. 187–196). Cambridge Univ. Press. https://doi.org/10.1017/9781108620024.023.

47. Strickert, M. (2021). Zwischen Normierung und Offenheit – Potenziale und offene Fragen bezüglich kontrollierter Vokabulare und Normdateien. LIBREAS. Library Ideas, 40, 1–19. https://doi.org/10.18452/23807.

48. Subías-Beltrán, P., Pitarch, C., Migliorelli, C., Marte, L., Galofré, M., & Orte, S. (2024). The role of transparency in AI-driven technologies: Targeting healthcare. In E. P. Dados (Ed.). Artificial intelligence — Ethical and legal challenges (forthcoming; online first). 1–21. http://dx.doi.org/10.5772/intechopen.1007444.

49. Whittlestone, J., Nyrup, R., Alexandrova, A., & Cave, S. (2019). The role and limits of principles in AI ethics: Towards a focus on tensions. In V. Conitzer et al. (Eds.). AIES’1: Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society (pp. 195–200). Association for Computing Machinery. https://doi.org/10.1145/3306618.3314289.

50. Yang, H. F., Zhao, Y., Cai, J., Zhu, M., Hwang, J. -N., & Chen, Y. (2024). Mitigating bias of deep neural networks for trustworthy traffic perception in autonomous systems. In 2024 IEEE Intelligent Vehicles Symposium (IV) (pp. 633–638). IEEE. https://doi.org/10.1109/IV55156.2024.10588805.

51. Zaagsma, G. (2023). Digital history and the politics of digitization. Digital Scholarship in the Humanities, 38(2), 830–851. https://doi.org/10.1093/llc/fqac050.


Review

For citations:


Krasni J.Z. Towards an ethical strategy for research data infrastructures: Digitalizing archives of historical hate. Shagi / Steps. 2025;11(4):205-221. EDN: RIDITQ

Views: 10


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2412-9410 (Print)
ISSN 2782-1765 (Online)